
1

Learning Manipulation Skills Via

Hierarchical Spatial Attention
Marcus Gualtieri and Robert Platt

Abstract—Learning generalizable skills in robotic
manipulation has long been challenging due to real-
world sized observation and action spaces. One
method for addressing this problem is attention focus
– the robot learns where to attend its sensors and
irrelevant details are ignored. However, these methods
have largely not caught on due to the difficulty of
learning a good attention policy and the added partial
observability induced by a narrowed window of focus.
This article addresses the first issue by constraining
gazes to a spatial hierarchy. For the second issue,
we identify a case where the partial observability
induced by attention does not prevent Q-learning
from finding an optimal policy. We conclude with
real-robot experiments on challenging pick-place tasks
demonstrating the applicability of the approach.

I. INTRODUCTION

Learning robotic manipulation has remained an

active and challenging research area. This is be-

cause the real-world environments in which robots

exist are large, dynamic, and complex. Partial ob-

servability – where the robot does not at once

perceive the entire environment – is common and

requires reasoning over past perceptions. Addition-

ally, the ability to generalize to new situations is

critical because, in the real world, new objects can

appear in different places unexpectedly.

The particular problem addressed in this paper

is the large space of possible robot observations

and actions – how the robot processes its past

and current perceptions to make high-dimensional

decisions. Visual attention has long been suggested

as a solution to this problem [1]. Focused percep-

tions can ignore irrelevant details, and generaliza-

tion is improved by the elimination of the many
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irrelevant combinations of object arrangements [1].

Additionally, as we later show, attention can result

in a substantial reduction to the number of actions

that need considered. Indeed, when selecting po-

sition, the number of action choices can become

logarithmic rather than linear in the volume of the

robot’s workspace. In spite of these benefits, visual

attention has largely not caught on due to (a) the

additional burden of learning where to attend and

(b) additional partial observability caused by the

narrowed focus.

We address the first challenge – efficiently learn-

ing where to attend – by constraining the system

to a spatial hierarchy of attention. On a high level

this means the robot must first see a large part of

the scene in low detail, select a position within

that observation, and see the next observation in

more detail at the position previously selected, and

so on for a fixed number of gazes. We address

the second challenge – partial observability induced

by the narrowed focus – by identifying attention

with a type of state-abstraction which preserves

the ability to learn optimal policies with efficient

reinforcement learning (RL) algorithms.

This article extends our prior work [2], wherein

we introduced the hierarchical spatial attention

(HSA) approach and demonstrated it on 3 chal-

lenging, 6-DoF, pick-place tasks. New additions

include (a) faster training and inference times, (b)

more ablation studies and comparisons to related

work, (c) better understanding of when an optimal

policy can be learned when using this approach, (d)

longer time horizons, and (e) improved real-robot

experimental results.

The rest of the paper is organized as follows.

First is related work (Section II). Next, the general

manipulation problem is described and the visual
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attention aspect is added (Sections III and IV-A).

After that, the HSA constraints are added, and this

approach is viewed as a generalization of earlier

approaches (Section IV-B to IV-E). The bulk of

the paper includes analysis and comparisons in 4

domains of increasing complexity (Section V). Real

robot experiments are described close to the end

(Sections V-C and V-D). Finally, we conclude with

what we learned and future directions (Section VI).

II. RELATED WORK

This work is most related to robotic manipula-

tion, reinforcement learning, and attention models.

It is extends our prior research on 6-DoF pick-place

[2] and primarily builds on DQN [3] and Deictic

Image Mapping [4].

A. Learning Robotic Manipulation

Traditional approaches to robotic manipulation

consider known objects – a model of every object

to be manipulated is provided in advance [5], [6],

[7]. While these systems can be quite robust in

controlled environments, they encounter failures

when the shapes of the objects differ from ex-

pected. Recent work has demonstrated grasping of

novel objects by employing techniques intended to

address the problem of generalization in machine

learning [8], [9], [10], [11], [12], [13], [14], [15],

[16].

There have been attempts to extend novel object

grasping to more complex tasks such as pick-

place. However, these have assumed either fixed

grasp choices [17] or fixed place choices [18]. The

objective of the present work is to generalize these

attempts – a single system that can find 6-DoF grasp

and place poses.

Other research considers grasping and pushing

novel objects to a target location [19]. Their ap-

proach is quite different: a predictive model of

the environment is learned and used for planning,

whereas we aim to learn a policy directly. Other

work has considered the problem of domain transfer

[20] and sparse rewards in RL [21]. We view these

as complimentary ideas that could be combined

with our approach for an improvement.

B. Reinforcement Learning

Like several others, we apply RL techniques to

the problem of robotic manipulation (see above-

mentioned [10], [13], [15], [18], [21] and survey

[22]). RL is appealing for robotic control for several

reasons. First, several algorithms (e.g., [23], [24])

do not require a complete model of the environment.

This is of particular relevance to robotics, where

the environment is dynamic and difficult to de-

scribe exactly. Additionally, observations are often

encoded as camera or depth sensor images. Deep

Q-Networks (DQN) demonstrated an agent learning

difficult tasks (Atari games) where observations

were image sequences and actions were discrete [3].

An alternative to DQN that can handle continuous

action spaces are actor-critic methods like DDPG

[25]. Finally, RL – which has its roots in optimal

control – provides tools for the analysis of learning

optimal behavior (e.g. [26], [27], [28]), which we

refer to in Section V-A.

C. Attention Models

Our approach is inspired by models of visual

attention. Following the early work of Whitehead

and Ballard [1], we distinguish overt actions (which

directly affect change to the environment) from per-

ceptual actions (which retrieve information). Simi-

lar to their agent model, our abstract robot has a

virtual sensor which can be used to focus attention

on task-relevant parts of the scene. The present

work updates their methodology to address more

realistic problems, and we extend their analysis

by describing a situation where an optimal policy

can be learned even in the presence of “perceptual

aliasing” (i.e. partial observability).

Attention mechanisms have also been used with

artificial neural networks to identify an object of

interest in a 2D image [29], [30], [31], [32]. Our

situation is more complex in that we identify 6-

DoF poses of the robot’s hand. Improved grasp

performance has been observed by active control of

the robot’s sensor [33], [34]. These methods attempt

to identify the best sensor placement for grasp

success. In contrast, our robot learns to control

a virtual sensor for the purpose of reducing the

complexity of action selection and learning.









6

scene. For example, a pick-place task where e.e.

poses are in SE (3), the robot workspace is 1 m3,

the required position precision is 1 mm, and the

required orientation resolution is 1◦ per Euler angle

requires on the order of 1017 actions. Adding more

levels (i.e. L > 1) alleviates this problem.

2) Deictic Image Mapping: With L = 1, T 1

s

centered in the robot’s workspace, z1 the deictic

marker size (e.g., the size of the largest object to

be manipulated), and d1 large enough to capture

the entire workspace, HSA applied to the looka-

head sense-move-effect MDP is the Deictic Image

Mapping representation [4]. Similar to the case with

DQN, if the space of e.e. poses is large, and precise

positioning is needed, many actions need to be

sampled. In fact, the computational burden with the

Deictic Image Mapping representation is even larger

than that of DQN due to the need to create images

for each action. Yet, the deictic representation has

significant advantages over DQN in terms of effi-

cient learning due to its small observations [4].

HSA generalizes and improves upon both DQN

and Deictic Image Mapping by overcoming the

burden for the agent to select from many actions in

a single time step. Instead, the agent sequentially

refines its choice of e.e. pose over a sequence of L
decisions. We provide comparisons between these

approaches in Section V.

E. Implementation Methods

To implement HSA for a sense-move-effect MDP,

it is necessary to select values for HSA parameters

and a training algorithm. Here we provide rough

guidelines for making both choices for standard

HSA.

1) HSA Parameter Values: Ideal values for T 1

s ,

L, and [(z1, d1), . . . (zL, dL)] depend on the posi-

tion and size of the robot’s workspace, the desired

e.e. precision, and available computing resources.

In our implementations, we have separate levels

for selecting position and orientation, with position

selecting levels occurring first. The procedure for

deciding position selecting levels is as follows.

First, the position component of the initial sensor

pose T 1

s is set to the center of the robot’s workspace.

Second, the number of action samples ns depends

on computing resources, e.g., the number of Q-

values that can be evaluated in parallel. If ns = n3,

where n is the number of position samples spaced

evenly along an axis, then n is set to the largest

integer such that ns samples can be evaluated

efficiently. Third, the number of levels L is the min-

imum number of times the workspace needs divided

to achieve the desired e.e. precision. If p ∈ R
3

>0
is

the desired e.e. precision and w ∈ R
3

>0
is the size of

the workspace, L = maxi=1,...,3⌈logn(w(i)/p(i))⌉.

Fourth, sampling regions di for i = 1, . . . , L should

be large enough so that, if patches size di are

centered on samples in level i−1, the entire region

is covered: di = w/ni−1. Lastly, observation sizes

zi for i = 1, . . . , L should be equal to di or the size

of the largest object to be manipulated, whichever is

largest. The latter condition is necessary if the entire

object must be visible to determine the appropriate

action. For example, when grasping bottles to be

placed upright, either the top or bottom of the bottle

must be visible to determine bottle orientation in

the hand. Deciding orientation selecting levels is

simpler: add 1 level per Euler angle, each with the

desired angular e.e. precision.

2) Training Algorithm: Algorithm 1 is a variant

of DQN [3] that follows the HSA constraints.

For concreteness, this implementation stores ex-

periences for Q-learning; modification for other

temporal difference (TD) update rules, such as Sarsa

[24] or Monte Carlo (MC) [36], is straight-forward.

For simplicity of exposition, we also restrict to the

case where image history consists of the current

image I and the image Ih before the last grasp,

e.e. status is binary empty or holding , and the e.e.

operation is binary open or close .

Initially, the Q-function gets random weights,

the experience replay database is empty, and the

probability of taking random actions ǫ = 1 (line 1).

The environment is initialized to a scene unique to

each episode (line 2). For each time step, the e.e.

status is observed (line 5), and Ih is the previously

observed image if the e.e. is holding something

(lines 6-8). Then, for each HSA level, a sense

action is taken (line 10), the pose of the next sense

action is determined either randomly or according

to Q (line 12), and the experience is saved (line 15).
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• Transition. For levels l = 1, . . . , L−1, the robot

selects a cell in G which corresponds to some

partition of space in the underlying grid. The

sensor perceives this part of the underlying grid

and generates the observation at level l + 1. For

level L, the L selections determine the location

of the underlying move-effect action, l is reset

to 1, and otherwise the transition is the same as

in the ground MDP.

• Reward. The reward is 0 for levels 1, . . . , L −
1. Otherwise, the reward is the same as for the

ground MDP.

The above process is no longer Markov because a

history of states and actions could be used to better

predict the next state. For instance, for a sufficiently

long random walk, the exact location of all pegs

and disks could be determined from the history

of observations, and the underlying grid could be

reconstructed.

On the other hand, this abstraction results in

substantial savings in terms of the number of states

(Eq. 2) and actions (|A| = 8). The only nonconstant

term (besides tmax ) is logarithmic in m. Referring

to the earlier example with m = 16 and n = 3, the

state-action lookup table size is the order of 1011.

|S| ≤ 233 log
2
(m)tmax (2)

3) Theoretical Results: The sense-move-effect

MDP with HSA constraints can be classified ac-

cording to the state abstraction ordering defined in

Li et al. [28]. In particular, we show Q∗-irrelevance,

which is sufficient for the convergence of a number

of RL algorithms, including Q-learning, to a policy

optimal in the ground MDP.

Definition 5 (Q∗-irrelevance Abstraction [28]).

Given an MDP M = 〈S,A, P,R, γ〉, any states

s1, s2 ∈ S, and an arbitrary but fixed weighting

function w(s), a Q∗-irrelevance abstraction φQ∗ is

such that for any action a, φQ∗(s1) = φQ∗(s2)
implies Q∗(s1, a) = Q∗(s2, a).

φQ∗ is a mapping from ground states to abstract

states and defines the abstract MDP.3

Theorem 1 (Convergence of Q-learning under

Q∗-irrelevance [28]). Assume that each state-action

pair is visited infinitely often and the step-size

parameters decay appropriately. Q-learning with

abstraction φQ∗ converges to the optimal state-

action value function in the ground MDP. Therefore,

the resulting optimal abstract policy is also optimal

in the ground MDP.

Because Li et al. do not consider action ab-

stractions, we redefine the ground MDP to have

the same actions as sense-move-effect MDP. Ad-

ditionally, to keep the ground MDP Markov, we

add the current level l, and the current point of

focus v ∈ {1, . . . ,m}3, to the state. This does

not essentially change the tabular pegs on disks

domain but merely allows us to rigorously make

the following connection.

Let states and actions of the ground MDP be

denoted by s and a respectively. Similarly, let

states and actions of the sense-move-effect MDP be

denoted by s̄ and ā respectively. Let φSME : S → S̄
be the observation function.

Theorem 2 (φSME is Q∗-irrelevant). The sense-

move-effect abstraction, φSME , is a Q∗-irrelevance

abstraction.

Proof. Q∗(s, a) can be computed from s̄ and ā. The

reward after the current overt stage t depends on h,

whether or not it is possible to select a peg/disk,

and whether or not it is possible to avoid selecting

a placed peg. These are known from s̄ and ā.

Furthermore, whether or not a peg will be held after

the current stage can be determined from s̄ and ā.

Finally, due to tmax = 2n and the fact that all pegs

are initially unplaced, the sum of future rewards

following an optimal policy from the current stage

depends only on (a) whether or not a peg will be

3Although the definition is for infinite-horizon problems (due
to γ), our finite-horizon problem readily converts to an infinite-
horizon problem by adding an absorbing state that is reached
after tmax overt stages. The weight w(s) is the probability the
underlying state is s given its abstract state φ(s) is observed.
Any fixed policy, e.g. ǫ-greedy with fixed ǫ, induces a valid
w(s) and satisfies the definition.
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held after the current stage and (b) the amount of

time left, t− 1.

4) Simulation Results: In these experiments,

there were n = 3 objects, and the grid size was

m = 16. Besides Deictic Image Mapping (where

L = 1), the number of levels was L = 4. A

comparison with no abstraction or HSA with L = 1
was not possible because the system quickly ran

out of memory (Eq. 1). The learning algorithm was

Sarsa [24], and actions were taken greedily w.r.t. the

current Q-estimate. An optimistic initialization of

action-values and random tie-breaking were relied

on for exploration.

The proof to Theorem 2 suggests the observabil-

ity of pegs, disks, placed pegs, and empty space

are all important for learning the optimal policy.

On the other hand, we empirically found no dis-

advantage to removing the Gpd (placed pegs) and

Ge (empty space) grids. However, it is important to

distinguish unplaced pegs and placed pegs. Fig. 8

shows learning curves for an HSA agent with Gp

and Gd grids versus an HSA agent with the same

grids but showing pegs/disks irregardless of whether

or not they are placed/occupied.

Fig. 8: Number of objects placed for the standard

HSA agent (blue) and a standard HSA agent with

a faulty sensor (red). Curves are first mean and ±σ
over each episode in 30 realizations, then averaged

over 1, 000-epsisode segments for visualization.

Lookahead HSA and Deictic Image Mapping

variants (Section IV-C and IV-D) result in an even

smaller state-action space than standard HSA. In

the tabular domain, this means faster convergence

(Fig. 9). Although the deictic representation seems

superior in these results, it has a serious drawback.

The action-selection time scales linearly with m3

because there is one action for each cell in the

underlying grid. The lookahead variant captures

the best of both worlds – small representation and

fast execution. Thus, in the tabular domain, looka-

head appears to be the satisfactory middle ground

between the two approaches. However, for more

complex domains, where Q-function approximation

is required, the constant time needed to generate

the action images becomes more significant, and

the advantage of lookahead in terms of episodes to

train diminishes (Section V-B).

Fig. 9: Number of objects placed for standard HSA

(blue), lookahead HSA (red), and Deictic Image

Mapping (yellow) agents. Curves are mean (solid)

and ±σ (shaded) over 30 realizations. Plot in log

scale for lookahead and deictic results to be visible.

B. Upright Pegs on Disks

In this domain, pegs and disks are modeled as tall

and flat cylinders, respectively, where the cylinder

axis is always vertical (Fig. 10, left). Unlike the

tabular domain, object size and position are sampled

from a continuous space. Grasp and place success

are checked with a set of simple conditions appro-
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Fig. 11: Standard HSA with varying number of

levels. (Blue) L = 3, (red) L = 2, and (yellow)

L = 1. Curves are mean ±σ over 10 realizations

then averaged over 1, 000 episode segments.

and d are shown in Table III. The “ideal” values

are those selected according to the principles in

Section IV-E1 and correspond to the 3-levels case

in Fig. 11. As expected, performance is much worse

when selecting z and d without consideration to task

geometry.

Small Ideal Large

level-1, zxy = 36.0 36.0 36.0

level-1, dxy = 36.0 36.0 36.0

level-2, zxy = 6.00 9.00 12.00

level-2, dxy = 6.00 9.00 12.00

levle-3, zxy = 6.00 9.00 12.00

level-3, dxy = 1.50 2.25 3.00

µ Return 2.69 3.91 2.83

σ Return 1.32 0.01 1.75

TABLE III: Varying standard HSA parameters zxy
and dxy (in cm). “Ideal” values were selected ac-

cording to Section IV-E1. “Small” (resp. “Large”)

values are smaller (resp. larger) than ideal. Last 2

rows are average and standard deviation over sum

of rewards per episode, after 10 different training

sessions and 1, 000 episodes per session.

We also compared standard HSA to lookahead

HSA, both with 3 levels. We did not compare to the

Deictic Image Mapping approach (Lookahead HSA

with 1 level) because computation of all 49 images

was prohibitively expensive. Results are shown in

Fig. 12. In contrast to the tabular results, both

scenarios perform similarly. We hypothesize that

the advantage of lookahead HSA is lost due to

the equivariance property of CNNs. Since execution

time for standard HSA is less than half that of

lookahead (1.29 versus 3.67 hours), from now on

we only consider standard HSA.

Fig. 12: Standard HSA (blue) versus lookahead

HSA (red).

C. Bottles on Coasters

The main question addressed here is if HSA

can be applied to a practical problem and imple-

mented on a physical robotic system. The bottles

on coasters domain is similar to the pegs on disks

domain, but now objects have complex shapes and

are required to be placed upright.6 The reward is 1
for grasping an unplaced object more than 4 cm

from the bottom (placing with bottom grasps is

kinematically infeasible in the physical system), −1
for grasping a placed object, 1 for placing a bottle,

and 0 otherwise.

Observations are similar to before except now

the image resolution is lower (nx = ny = 48),

and the overt time step is always input to grasp

networks (and never input to place networks). HSA

6Grasp conditions: gripper closing region intersects exactly 1
object and the antipodal condition from [12] with 15◦ friction
cone. Place conditions: bottle is upright, center of mass (CoM)
(x, y) position at least 2 cm inside an unoccupied coaster, and
bottom within ±2 cm of coaster surface.
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has 3 levels selecting (x, y, z) position and 1 level

selecting orientation about the gripper approach axis

(Fig. 5).

To achieve the target precision in e.e. pose (3.75

mm position and 6◦ orientation for grasping), DQN

(or 1-level HSA) would need to evaluate over 53

million actions. Evaluation was prohibitively ex-

pensive with our computing hardware. HSA only

needs 404 actions (although we use 708 to achieve

redundancy, with little loss in computation time as

the evaluation is done in parallel).

1) Network Architecture and Algorithm: The

network architecture is shown in Table IV. There

is 1 network for each HSA level and e.e. status.

Weight decay is 0. Q-network targets are the reward

after the current overt stage.

layer kernel size stride output size

conv-1 8× 8 2 24× 24× 64
conv-2 4× 4 2 12× 12× 64
conv-3 3× 3 2 6× 6× 64

conv-4 / ip-1 2× 2 / - 1 / - 63/norient

TABLE IV: CNN architecture for the bottles on

coasters domain. Each layer besides the last has

a ReLU activation. The last layer is a convolution

layer for levels 1-3 (selecting position) and an inner

product (IP) layer for level 4 (selecting orientation).

norient = 60 for grasp networks and norient = 3
for place networks.

2) Simulation Results: 70 bottles from 3DNet

[39] were randomly scaled to height 10-20 cm.

Bottles were placed upright with probability 1/3
and on their sides with probability 2/3. Learning

curves for 2 bottles and 2 coasters are shown in

Fig. 13. Performance is lower than that of the

upright pegs on disks domain, reflective of the

additional problem complexity.

To test robustness of the system to background

noise, we ran the same experiment with the addition

of distractor objects. These distractors are 3 rectan-

gular blocks, with side lengths 1 to 4 cm, scattered

randomly in the scene (e.g., Fig. 14, left). Learning

performance is only slightly lower (Fig. 14, right).

However, if clutter is present at test time, it is

important to train the system with clutter. The robot

trained without clutter places an average of 1.24

Fig. 13: Number of bottles grasped (blue) and

placed (red). Curves are mean ±σ over 10 realiza-

tions then averaged over 1, 000 episode segments.

Standard HSA with L = 4.

bottles in the cluttered environment (versus 1.55 if

trained with clutter). The distractors are visible at

some levels (e.g., level 1), so the robot does need

to learn to ignore (and avoid collisions with) them.

Fig. 14: Left. Scene with clutter. Right. Learning

curves comparing average sum of rewards when

distractors are not present (blue) and present (red).

3) Top-n Sampling: Before considering experi-

ments on a physical robotic system, we address an

important assumption of the move-effect system of

Section III. The assumption is the e.e. can move

to any pose, Tee , in the robot’s workspace. Recent

advances in motion planning algorithms make this

a reasonable assumption for the most part; nonethe-

less, a pose can still sometimes be unreachable due

to obstacles, motion planning failure, or IK failure.
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To address this issue, multiple, high-valued ac-

tions are sampled from the policy learned in simula-

tion. In particular, for each level l of an overt stage,

we take the top-n samples according to Eq. 3, where

Ql is the action-value estimate at level l, Qmax is

the maximum possible action-value, Qmin is the

minimum possible action-value, and p0 = 1.

pl = pl−1

Ql −Qmin

Qmax −Qmin

, l = 1, . . . , L (3)

Preliminary tests in simulation showed sampling

top-n pl values performs better than sampling top-n
QL values, as was done previously [2]. Sampling

top-n pl values may be viewed as an ensemble

method where each level votes on the final overt

action (cf. [40]).

During test time, the resulting n, Tee samples

are checked for IK and motion plan solution in

descending order of pL value. As n increases,

the probability of failing to find a reachable e.e.

pose decreases; however, the more poses that are

unreachable, the lower the pL value. Thus, when

designing an HSA system, it is important to not

over constrain the space of actions.

4) Robot Experiments: We tested the bottles on

coasters task with the physical system depicted in

Fig. 15. The system consists of a Universal Robots

5 (UR5) arm, a Robotiq 85 parallel-jaw gripper, and

a Structure depth sensor. The test objects (Fig.16)

were not observed during training. The CNN weight

files had about average performance out of the 10

realizations (Fig. 13).

Initially, 2 coasters were randomly selected and

placed in arbitrary positions in the back half of the

robot’s workspace (too close resulted in unreachable

places). Then, 2 bottles were randomly selected and

placed upright with probability 1/3 and on the side

with probability 2/3. The bottles were not allowed

to be placed over a coaster.7 Top-n sampling with

n = 200 was used. A threshold was set for the final

grasp/place approach, whereby, if the magnitude

of the force on the arm exceeded this threshold,

7Python’s pseudorandom number generator was used to decide
the objects used and upright/side placement. Object position was
decided by a human instructed to make the scenes diverse.

Fig. 15: Test setup for bottles on coasters task:

a UR5 arm, Robotiq 85 gripper, Structure depth

sensor (mounted out of view above the table and

looking down), 2 bottles, and 2 coasters.

the motion canceled and the open/close action was

immediately performed.

Fig. 16: Test objects used in UR5 experiments.

Results are summarized in Table V, and a suc-

cessful sequence is depicted in Fig. 17. A grasp

was considered successful if a bottle was lifted to

the “home” configuration; a place was considered
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successful if a bottle was placed upright on an

unoccupied coaster and remained there after the

gripper withdrew. Failures were: grasped a placed

object (×3), placed too close to the edge of a coaster

and fell over (×3), placed upside-down (×2), object

slip in hand after grasp caused a place failure (×1),

and object fell out of hand after grasp (×1).

Grasp Place

Attempts 60 59

Success Rate 0.98 0.90

Number of Objects 1.97± 0.18 1.67± 0.48

TABLE V: Performance for UR5 experiments plac-

ing 2 bottles on 2 coasters averaged over 30

episodes with ±σ. Task success rate with tmax = 4
was 0.67.

D. 6-DoF Pick-Place

The HSA method was also implemented for

6-DoF manipulation, and the same system was

tested on 3 different pick-place tasks [2].8 The

tasks included stacking a block on top of another,

placing a mug upright on the table, and (similar to

Section V-C) placing a bottle on a coaster. All tasks

included novel objects in light to moderate clutter

(Fig. 18). To handle perceptual ambiguities in mugs,

the observations were 3-channel images (k = 2,

nch = 3, nx = ny = 60) projected from a point

cloud obtained from 2 camera poses. HSA included

6 levels (L = 6) – 3 for (x, y, z) position and 1 for

each Euler angle. Results from UR5 experiments

are shown in Table VI.

Blocks Mugs Bottles

Grasp 0.96 0.86 0.89

Place 0.67 0.89 0.64

Task 0.64 0.76 0.57

n Grasps 50 51 53

n Places 48 44 47

TABLE VI: Top. Grasp, place, and task success

rates for the 3 tasks with tmax = 2 (i.e., 1 pick

1 place). Bottom. Number of grasp and place

attempts.

8This section refers to an earlier version of our system, so
the simulations took longer and the success rates for bottles are
lower. The setup was similar to that in Fig. 15 except the sensor
was mounted to the wrist. See [2] for more details.

VI. CONCLUSION

The primary conclusion is that the sense-move-

effect abstraction, when coupled with hierarchical

spatial attention, is an effective way of simultane-

ously handling (a) high-resolution 3D observations

and (b) high-dimensional, continuous action spaces.

These two issues are intrinsic to realistic problems

of robot learning. We provide several other con-

siderations relevant to systems employing spatial

attention:

A. Secondary Conclusions

• Compared to a flat representation, HSA can result

in an exponential reduction in the number of

actions that need to be sampled (Section IV-B).

• HSA generalizes DQN, and lookahead HSA gen-

eralizes Deictic Image Mapping (Section IV-D).

• The partial observability induced by an HSA

observation does not preclude learning an optimal

policy (Section V-A).

• HSA may take longer to learn than DQN in terms

of the number of episodes to convergence, but

HSA executes faster when the number of actions

is large (Section V-B).

• Lookahead HSA is preferred to standard HSA in

terms of the number of the episodes to train, but

execution time is longer by a constant and the

learning benefit diminishes when coupled with

function approximation (Sections V-A and V-B).

• HSA can be applied to realistic problems on a

physical robotic system (Sections V-C and V-D).

B. Limitations and Future Work

A concern with all deep RL methods is that

modeling and optimization errors induced by the

use of function approximation prevent the robot

from learning an optimal policy. This is true for

even simple problems, such as the upright pegs on

disks problem of Section V-B. Also, how manip-

ulation skills can be automatically and efficiently

transferred to different but related tasks remains

an open question. Even small changes to the task,

such as the inclusion of distractor objects, requires

complete retraining of the system for maximum per-

formance. Finally, HSA is a competing approach to
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Fig. 17: Successful trial – all bottles placed in 4 overt stages. Image taken immediately after open/close.

Fig. 18: 6-DoF pick place on the UR5 system. Top.

Blocks task. Bottom. Mugs task. Notice the grasp is

diagonal to the mug axis, and the robot compensates

for this by placing diagonally with respect to the

table surface.

policy search methods in that both can handle high-

dimensional, continuous action spaces. It would

be interesting to see a comparison between these

approaches. Previous value-based approaches like

DQN cannot handle the high-dimensional action

spaces prevalent in robotics; thus, HSA enables a

comparison between value and policy search meth-

ods for these domains.
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